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0 Preliminaries  
0.1 Properties of Integers  
Universal Product Code (UPC)

.

The 10-digit International Standard Book Number (ISBN-10)  has the property 
. As for a10, X stands for 10.

0.2 Modular Arithmetic  
Logic Gates & modulo 2 arithmetic

0.3 Complext Numbers  
norm of a+bi

Closure under division

conjugation

0.4 Mathematical Induction  
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e.g. Prove that  is always divisible by 17.

0.5 Equivalence Relations  
1. reflexive property: .
2. symmetric property: .
3. transitive property: .

e.g.

 if .

Partition

0.6 Functions (Mappings)  
To verify that a correspondence is a function:

One-to-one function:

Function from A onto B

Properties

1. associativity: .
2. If  and  is one-to-one, then  is one-to-one.
3. If  and  is onto, then  is onto.
4. If  is one-to-one and onto, then there is a function  from  onto  such that 

 for all a in A and  for all b in B.

0.7 Exercise  
1. If a mod st = b mod st, show that a mod s=b mod s and a mod t = b mod t. The converse is 

true if s and t are relatively prime.
2. If n is an integer greater than 1 and  mod , prove that n is prime.
3. Prove that 3, 5, and 7 are the only three consecutive odd integers that are prime.

 

1 Introduction to Groups  
1.1 Symmetries of a Square  
Cayley table

closure
identity
inverse
associativity

commutative (Abelian)
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Group Operation Identity
Form of
Element

Inverse Abelian

Matrix multiplication   No

Matrix multiplication   No

Mutiplication mod n 1   Yes

Componentwise
addition

  Yes

1.2 The Dihedral Groups  
cross cancellation

1.3 Bibliography of Niels Abel  
 

2 Groups  
2.1 Definition and Examples of Groups  

2.2 Elementary Properties of Groups  
Uniqueness of the Identity
Cancellation
Uniqueness of Inverses
Socks-Shoes Property: .

2.3 Historical Note  

2.4 Exercises  
1. Left-right cancellation implies commutativity, and cross cancellation implies Abelian 

property.
2. Law of Exponents for Abelian Groups: .
3. .
4. Supose  and  are distinct reflections in a dihedral group , Prove that . If 

, then .

 

3 Finite Groups; Subgroups  
3.1 Temiology and Notation  
Order of a group

Order of an element

Subgroup

Proper subgroup: .
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3.2 Subgroup Tests  
To prove that a subset is a subgroup

One-Step Test: .
Two-Step Test: .
Finite Subgroup Test: .

To prove that a subset is not a subgroup

Show that the identity is not in the set.
Exhibit an element of the set whose inverse is not in the set.
Exhibit two elements of the set whose product is not in the set.

3.3 Examples of Subgroups  
 is an Abelian subgroup, where  is called a generator of .

 is the smallest subgroup of  containing .

Gaussian Integers: .

Center is a subgroup. .

For ,

Centralizer of  in  is a subgroup: .

Centralizer of  in  is a subgroup: .

, .

 is Abelian if and only if   for all  in .

3.4 Exercises  
1. For elements  in group , .

2. Prove that if  is the only element of order  in a group, then  lies in the center of the 
group.

Proof. .

3. No group is the union of two proper subgroups, but some groups are the union of three 
proper subgroups.

4. Let  be a group and let  be a subgroup of . For any fixed  in , define the conjugate 
of : , which preserves structure.

5. Compute the probability that two randomly chosen elements (they can be the same) from 
 communte:
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4 Cyclic Groups  
4.1 Properties of Cyclic Groups  

If  and  belong to a finite group and , then  divides .

 if and only if .

Theorem 4.2 ⭐ 

.

In a finite cyclic group, the order of an element divides the order of the group.

.

.

4.2 Classification of Subgroups of Cyclic Groups  
Theorem 4.3 ⭐  Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if , then the order of any 
subgroup of  is a divisor of ; and, for each positive divisor  of , the group  has 
exactly one subgroup of order , namely, .

Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

If  is a positive divisor of , the number of elements of order  in a cyclic group of order  
is .

Notice that for a finite cyclic group of order , the number of elements of order  for any 
divisor  of  depends only on .

Corollary 4.1 Number of Elements of Order  in a Finite Group.

In a finite group, the number of elements of order  is a mutliple of .

subgroup lattice

4.3 Exercise  
1. If  is a group element of infinite order, then

2. Prove that a finite group is the union of proper subgroups if and only if the group is not 
cyclic.

4.3 Bibliography of James Joseph Sylvester  
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5 Permutation Groups  
5.1 Definitions and Notation  

5.2 Cycle Notation  

5.3 Properties of Permutations  
Theorem 5.1 Products of Disjoint Cycles

Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

Theorem 5.2 Disjoint Cycles Commute

If the pair of cycles  and  have no entries in 
common, then .

Theorem 5.3 Order of a Permutation

The order of a permutation of a finite set written in disjoint cycle form is the least common 
multiple of the lengths of the cycles.

Theorem 5.4 Product of 2-Cycles

Every permutation in , is a product of 2-cycles.

Lemma If , where  are 2-cycles, then  is even.

Theorem 5.5 Always Even or Always Odd

Therorem 5.6 Even Permutations Form a Group

The set of even permutations in  forms a subgroup of , which is called the alternating 
group of degree , .

Theorem 5.7 For ,  has order .

5.4 A Check-Digit Scheme Based on  

5.5 Exercise  
1. Stabilizer of  in  is a subgroup: .
2. Let  belong to , Prove that  divides .

5.5 Bibliography of Augustin Cauchy  

5.6 Bibilography of Alan Turing  
 

6 Isomorphisms  
6.1 Motivation  

6.2 Definition and Examples  
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Definition Group Isomorphism

An isomorphism  from a group  to a group  is a one-to-one onto mapping (or 
function) from  to  that preserves the group operation. That is,

If there is an isomorphism from  onto , we say that  and  are isomorphic and 
write .

To prove a group  is isomorphic to a group :

1. "Mapping": Define a function  from  to ;
2. "1-1": Assume that , prove that ;
3. "Onto": For any element  in , find an element  in  such that ;
4. "O.P.": Prove that  is operation-preserving; that is, show that .

Example

Conjugation by M: .

6.3 Properties of Isomorphisms  
Theorem 6.1 Properties of Isomorphisms Acting on Elements

Suppose that  is an isomorphism from a group  onto a group . Then

1.  carries the identity of  to the identity of .
2. For every integer  and for every group element  in , . (Additive 

form: .)
3. For any elements  and  in ,  and  commute if and only if  and  

commute.
4.  if and only if .
5.  for all  in  (isomorphisms preserve orders).
6. For a fixed integer  and a fixed group element  in , the equation  has the 

same number of solutions in  as does the equation  in .
7. If  is finite, thenn  and  have exactly the same number of elements of every 

order.

Theorem 6.2 Properties of Isomorphisms Acting on Groups

Suppose that  is an isomorphism from a group  onto a group . Then

1.  is an isomorphism from  onto .
2.  is Abelian if and only if  is Abelian.
3.  is cyclic if and only if  is cyclic.
4. If  is a subgroup of , then  is a subgroup of .
5. If  is a subgroup of , then  is a subgroup of .
6. .

To prove groups  and  are not isomorphic:

Observe that .
Observe that  is cyclic but  is not.
Observe that  is Abelian but  is not.
show that the largest order of any element in  is not the same as that in .
Show that the number of elements of some specific order in  is not the same as .
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6.4 Automorphisms  
Definition Inner Automorphism Induced by 

Let  be a group, and let . The function  defined by  for all  in  
is called the inner automorphism of  induced by .

: the set of all automorphisms of .

: the set of all inner automorphisms of .

Theorem 6.3  and  are groups.

Theorem 6.4 .

6.5 Cayley's Theorem  
Theorem 6.5 Cayley's Theorem

Every group is isomorphic to a group of permutations.

The left regular representation of : .

6.6 Exercise  
1. .

2. For all finite groups, the order of a subgroup divides the order of the group.

3. .

4. Prove that

 

6.7 Bibliography of Arthur Cayley  
 

7 Cosets and Lagrange's Theorem  
7.1 Properties of Cosets  
Definition Coset of  in 

Let  be a group and let  be a noempty subset of . For any , 
, which is called the left coset of  in  containing . The element  

is called the coset representative of .

Lemma 7.1 Properties of Cosets

Let  be a subgroup of , and , then

1. .
2. .
3. .
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4. .
5.  or .
6. .
7. .
8. .
9. .

7.2 Lagrange's Theorem and Consequences  
Theorem 7.1 Lagrange's Theorem:  Divides 

If  is a finite group and  is a subgroup of , then  divides . Moreover, the number 
of distinct left cosets of  in  is .

The index of a subgroup  in  is the number of distinct left cosets of  in , denoted by 
.

Corollary 1 .

Corollary 2  Divides .

Corollary 3 Groups of Prime Order Are Cyclic.

Corollary 4 .

Corollary 5 Fermat's Little Theorem: .

.

Theorem 7.2 .

For two finite subgroups  and  of a group, define the set 
. Then .

 and  may not be a subgroup.
⭐   may not be a subgroup of , but , so , but need not divide 

.

Theorem 7.3 Classification of Groups of Order .

Let  be a group of order , where  is a prime greater than . Then  is isomorphic to 
 or .

.

7.3 An Application of Cosets to Permutation Groups  
Definition Stabilizer of a Point

Let  be a group of permutations of a set . For each  in , let 
. We call  the stabilizer of  in .

Definition Orbit of a Point

Let  be a group of permutations of a set . For each  in , let . 
The set  is a subset of  called the orbit of  under .

Theorem 7.4 Orbit-Stabilizer Theorem
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Let  be a finite group of permutations of a set . Then, for any  from , 
.

7.4 The Rotation Group of a Cube and a Soccer Ball  
Theorem 7.5 The Rotation Group of a Cube

The group of rotations of a cube is isomorphic to .

The rotation group of a pyraminx is isomorphic to .
The rotation group of a soccer ball (megaminx) is isomorphic to .

7.5 An Application of Cosets to the Rubik's Cube  

7.6 Exercises  
1. Let  and  be elements of a group , and  and  be subgroups of . If , prove 

that .
2. Let  and  are subgroups of  and  belongs to , show that .
3. If  is a finite group of order  with the property that  has exactly one subgroup of order  

for each positive divisor  of , then  is cyclic.
4. Let  and  be subgroups of a finite group  with . Prove that 

.
5. If a finite group  has subgroups  and  such that  with  where 

 is prime, prove that  or .
6. Prove that if  is a finite gruop, the index of  cannot be prime. 
7. Prove that  has no subgroup of order 15, 20 or 30, and  has no subgroup of order 30.

7.7 Bibliography of Joseph Lagrange  
 

8 External Direct Products  
8.1 Definition and Examples  
Definition External Direct Product

Let  be a finite collection of groups. The external direct product of them, 

written as , is the set of all -tuples for which the th 
component is an element of  and the operation is componentwise.

.
 if and only if .

8.2 Properties of External Direct Products  
Theorem 8.1 Order of an Element in a Direct Product

The order of an element in a direct product of a finite number of finite groups is the least 
common multiple of the orders of the components of the element. In symbols,
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If  and  be positive integers that are divisible by a prime , then the number of elements 
of order  in  is .

Theorem 8.2 Criterion for  to be Cyclic.

Let  and  be finite cyclic groups. Then  is cyclic if and only if  and  are 
relatively prime.

Corollary 1 Criterion for  to be Cyclic.

Corollary 2 Criterion for .

 if and only if  and  are relatively prime when 
.

8.3 The Group of Units Modulo  as an External
Direct Product

 

 is a subgroup of .

Theorem 8.3  as an External Direct Product

Suppose  and  are relatively prime. Then  is isomorphic to the external direct 
product of  and . In short,

Moreover,  is isomorphic to , and  is isomorphic to .

Corollary

Let , where  for . Then

e.g. .

8.4 RSA Public Key Encryption Scheme  
Receiver

1. PIck very large primes  and  and compute .
2. Compute the least common multiple of  and ; let us call it .
3. Pick  relatively prime to .
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4. Find  such that   .
5. Publicly announce  and .

Sender

1. Convert the message to a string of digits.
2. Break up the message into uniform blocks of digits; call them . (The integer 

calue of each  must be less than . In practive,  is so large that this is not a concern.)
3. Check to see that the greatest common divisor of each  and  is . If not,  can be 

factored and out code is broken. (In practice, the primes  and  are so large that they 
exceed all , so this step may be omitted.)

4. Calculate and send .

Receiver

1. For each received message , calculate .
2. Covert the string of digits back to a string of characters.

Principles

.

.

8.5 Exercises  
1.  is Abelian if and only if  and  are Abelian.
2. .
3. .
4. .
5. .
6. For relatively prime positive integeres  and , show that 

.

8.6 Bibliography of Leonard Adleman  
 

9 Normal Subgroups and Factor Groups  
9.1 Normal Subgroups  
Definition Normal Subgroup

A subgroup  of a group  is called a normal subgroup of  if  for all  in . We 
denote this by .

Theorem 9.1 Normal Subgroup Test

A subgroup  of  is normal in  if and only if  for all  in .

e.g.

Every subgroup of an Abelian group is normal.
The center  of a group is normal.
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 is a normal subgroup of .
Every subgroup of  consisting solely of rotations is normal.

 is a normal subgroup of .

Properties:

If  and  are subgroups of  and  is normal, then  is a subgroup of .
If a group  has a unique subgroup  of some finite order, then  is normal in .
Normality is not transitive: .
If  and  are normal, then  and  are normal.

.

9.2 Factor Groups  
Theorem 9.2 Factor (Quoation) Groups

Let  be a group and let  be a normal subgroup of . The set  is 
a group under the operation .

The converse is also true: if  defines a group operation on the set of left 
cosets of  in , then  is normal in .

9.3 Applications of Factor Groups  
Theorem 9.3  Theorem

Let  be a group and let  be the center of . If  is cyclic, then  is Abelian, 
thus  is trivial.

If  is cyclic, where  is a subgroup of , then  is Abelian.

If  is non-Abelian, then  is not cyclic.

A non-Abelian group of order , where  and  are primes, must have a trivial center.
If  is a subgroup of the factor group , then the set 

 is a subgroup of  of order , called the pull back of  
to .

Suppose that  is a finite group and a factor group  has an element  of order , 
then  has an element of order .

Theorem 9.4 , 

For any group ,  is isomorphic to .

It can be proved by the First Isomorphism Theorem in chapter 10 easily.

. By Theorem 9.3 and 9.4, 
we know that .

.

Theorem 9.5 Cauchy's Theorem for Abelian Groups

Let  be a finite Abelian group and let  be a prime that divides the order of , then  has 
an element of order .

9.4 Internal Direct Products  
Definition Internal Direct Product of  and 
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We say that  is the internal direct product of  and  and write  if  and  
are normal subgroups of  and

If  and  are relatively prime positive integers then .
.

Definition Internal Direct Product 

Let  be a finite collection of notmal subgroups of . We say that  is the 
internal direct product of  and write , if 

1. ,
2.  for .

Theorem 9.6 

If a group  is the internal direct product of a finite number of subgroups , 
then  is isomorphic to the external direct product of .

To prove this

.
Each member of  can be expressed uniquely in the form .
Mapping: .

If  for , then

Classification Theorems

Classification of subgroups of finite cyclic groups: There is exactly one subgroup for each 
divisor of the order of the group and no others.
Classification of groupus of prime order: Every group of prime order  is isomorphic to .
Classification of groups of  where  is an odd prime: Every group of  is isomorphic to 

 or .
Classification of groups of : Every group of order  is isomorphic to  or .

Theorem 9.7 Classification of finite Abelian groups of squarefree order

Every Abelian group of order  where  are distinct primes is cyclic.

.

Theorem 9.8 Classification of Groups of Order 

Every group of order , where  is a prime, is isomorphic to  or .

Let  be a group of order , then every subgroup of the form  is normal in .

Corollary

If  is a group of order , where  is a prime, then  is Abelian.

9.5 Exercises  
1. Prove that if  has index  in , then  is normal in .
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2. Prove that a factor group of a cyclic group is cyclic, a factor group of an Abelian group is 
Abelian.

3.  is normal in ,  is an element of . Then the order of the element  in the factor 
group  is the smallest positive integer  such that  is in . Moreover,  divides 

.

4. .

5. Groups of order  or  are all Abelian.

6. Let  be a group and let . Then

1.  is normal in .
2.  is Abelian.
3. If  is Abelian, then .
4. If  is a subgroup of  and , then  is normal.

7.  is normal in .

 

Question: 66.

9.6 Bibliography of Evariste Galois  
 

10 Group Homomorphisms  
10.1 Definition and Examples  
Definition Group Homomorphism

A homomorphism  from a group  to a group  is a mapping from  into  that 
preserves the group operation; that is,  for all  in .

Definition Kernel of a Homomorphism

The kernel of a homomorphism  from a group  to a group with identity  is the set 
.

Any isomorphism is a homoporphism that is also onto and one-to-one, the kernel of which is 
a trivial subgroup.
Let , then .

, then .
Every linear transformation is a group homomorphism and the null-space is the same as the 
kernel. An invertible linear transformation is a group isomorphism.

10.2 Properties of Homomorphisms  
Theorem 10.1 Properties of Elements Under Homomorphisms

Let  be a homomorphism from a group  to a group and let  be an element of . 
Then

1.  carries the identity of  to the identity of .
2.  for all  in .

af://n701
af://n703
af://n704
af://n720


3. If  is finite, then  divides  and if  is finite, then  divides  and 
.

4.  is a subgroup of .
5.  if and only if .
6. If , then .

The particular solution to  is , the entire solution to  is , then the entire 
solution to  is . It's a special case of property 6.

Theorem 10.2 Properties of Subgroups Under Homomorphisms

Let  be a homomorphism from a group  to a group  and let  be a subgroup of . 
Then

1.  is a subgroup of .
2. If  is cyclic, then  is cyclic.
3. If  is Abelian, then  is Abelian.
4. If  is normal in , then  is normal in .
5. If , then  is an -to-  mapping from  onto .
6. If  is finite, then  divides .
7.  is a subgroup of .
8. If  is a subgroup of , then  is a subgroup of .
9. If  is a normal subgroup of , then  is a normal 

subgroup of .
10. If  is onto and , then  is an isomorphism from  to .

.
The inverse image of an element is a coset of the kernel and that every element in that coset 
has the same image.

Corollary Kernels are Normal

Let  be a group homomorphism from  to , then  is a normal subgroup of .

The number of homomorphisms from  to  is , since such a 
homomorphism is completely specified by the image  of , and  divides both  and , 
and  for all divisor  of .

10.3 The First Isomorphism Theorem  
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Theorem 10.3 First Isomorphism Theorem

Let  be a group homomorphism from  to , then the mapping from  to 
, given by , is an isomorphism. In symbols, .

Corollary 1

If  is a homomorphism from a finite group  to , then .

Corollary 2

If  is a homomorphism from a finite group  to , then  divides  and .

The commutative diagram of Theorem 10.3 is:

 is called the natural mapping from  to . The 
diagram is commutative since .

 since  is a homomorphism with . Likewise, 
.

 since  from  onto  is a 
homomorphism with . Likewise, 

 since we have .
For an Abelian group  and a positive integer , let  denote the subgroup  
and  the subgroup . Then  since we have , 
but  since  may be not well-defined.

Theorem  Theorem

Let  be a subgroup of a group . Noting that the normalizer of  in , 
, and the centralizer of  in , 

, are subgroups of , consider the mapping 
from  to  given by , where . This mapping is a 
homomorphism with . So,  is isomorphic to a subgroup of 

, in fact, .

Theorem 10.4 Normal Subgroups Are Kernels

Every normal subgroup  of a group  is the kernel of a natural homomorphism of  
defined by .

10.4 Exercieses  

1. , then  is a normal subgroup of , and 

.
2. .
3. If  and  is a homomorphism from  to some group, prove that .
4. Let  be a normal subgroup of a group . Prove that every subgroup of  has the form 

, where  is a subgroup of .
5. For any two primes  and  with  where , a group of order  is cyclic.
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Theorem First Isomorphism Theorem

Let  be a group homomorphism from  onto , then the mapping  from  
to , given by , is an isomorphism. In symbols, .

Proof . 

Theorem Second Isomorphism Theorem

If  is a subgroup of  and  is a normal subgroup of , then .

Proof Let , then . 

Theorem Third Isomorphism Theorem

If  and  are normal subgroups of  and , then .

Proof Let , then . 

10.5 Bibliography of Camile Jordan  
 

11 Fundamental Theorem of Finite
Abelian Groups

 

11.1 The Fundamental Theorem  
Theorem 11.1 Fundamental Theorem of Finite Abelian Groups

Every finite Abelian group is a direct product of cyclic groups of prime-power order. 
Moreover, the number of terms in the product and the orders of the cyclic groups are 
uniquely determined by the group.

Writing an Abelian group  in the form , is called determining the 

isomorphism class of .

If , then  is an Abelian group of order .

11.2 The Isomorphism Classes of Abelian Groups  
Corollary Existence of Subgroups of Abelian Groups

If  divides the order of a finite Abelian group , then  has a subgroup of order .

11.3 Proof of the Fundamental Theorem  
Lemma 1

Let  be a finite Abelian group of order , where  is a prime that does not divide . 
Then , where  and . 
Moreover, .

Given an Abelian group  with , where 's are distinct primes, let 

, then  and 

.
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Lemma 2

Let  be an Abelian group of prime-power order and let  be an element of maximum 
order in , then  can be written in the form .

Lemma 3

A finite Abelian group of prime-order is an internal direct product of cyclic groups.

Lemma 4

Suppose that  is a finite Abelian group of prime-power order. If 
 and , where the 's and 's are 

nontrivial cyclic subgroups with  and 
, then  and  for all .

11.4 Exercises  
1. The number of elements in  of order  is 

.

2. Dirichlet's Theorem says that, for every pair of relatively prime integers  and , there are 
infinitely many primes of the form . Use Dirichlet's Theorem to prove that every 
finite Abelian group is isomorphic to a subgroup of a -group. (Hint: )
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