Part 1: Groups

0 Preliminaries

- 0.1 Properties of Integers
- 0.2 Modular Arithmetic
- 0.3 Complext Numbers
- 0.4 Mathematical Induction
- 0.5 Equivalence Relations
- 0.6 Functions (Mappings)
- 0.7 Exercise

1 Introduction to Groups

- 1.1 Symmetries of a Square
- 1.2 The Dihedral Groups
- 1.3 Bibliography of Niels Abel

2 Groups

- 2.1 Definition and Examples of Groups
- 2.2 Elementary Properties of Groups
- 2.3 Historical Note
- 2.4 Exercises

3 Finite Groups; Subgroups

- 3.1 Temiology and Notation
- 3.2 Subgroup Tests
- 3.3 Examples of Subgroups
- 3.4 Exercises

4 Cyclic Groups

- 4.1 Properties of Cyclic Groups
- 4.2 Classification of Subgroups of Cyclic Groups
- 4.3 Exercise
- 4.3 Bibliography of James Joseph Sylvester

5 Permutation Groups

- 5.1 Definitions and Notation
- 5.2 Cycle Notation
- 5.3 Properties of Permutations
- 5.4 A Check-Digit Scheme Based on D_5
- 5.5 Exercise
- 5.5 Bibliography of Augustin Cauchy
- 5.6 Bibilography of Alan Turing

6 Isomorphisms

- 6.1 Motivation
- 6.2 Definition and Examples
- 6.3 Properties of Isomorphisms
- 6.4 Automorphisms
- 6.5 Cayley's Theorem
- 6.6 Exercise
- 6.7 Bibliography of Arthur Cayley

7 Cosets and Lagrange's Theorem

- 7.1 Properties of Cosets
- 7.2 Lagrange's Theorem and Consequences
- 7.3 An Application of Cosets to Permutation Groups
- 7.4 The Rotation Group of a Cube and a Soccer Ball

- 7.5 An Application of Cosets to the Rubik's Cube
- 7.6 Exercises
- 7.7 Bibliography of Joseph Lagrange

8 External Direct Products

- 8.1 Definition and Examples
- 8.2 Properties of External Direct Products
- 8.3 The Group of Units Modulo n as an External Direct Product
- 8.4 RSA Public Key Encryption Scheme
- 8.5 Exercises
- 8.6 Bibliography of Leonard Adleman

9 Normal Subgroups and Factor Groups

- 9.1 Normal Subgroups
- 9.2 Factor Groups
- 9.3 Applications of Factor Groups
- 9.4 Internal Direct Products
- 9.5 Exercises
- 9.6 Bibliography of Evariste Galois
- 10 Group Homomorphisms
 - 10.1 Definition and Examples
 - 10.2 Properties of Homomorphisms
 - 10.3 The First Isomorphism Theorem
 - 10.4 Exercieses
 - 10.5 Bibliography of Camile Jordan

11 Fundamental Theorem of Finite Abelian Groups

- 11.1 The Fundamental Theorem
- 11.2 The Isomorphism Classes of Abelian Groups
- 11.3 Proof of the Fundamental Theorem
- 11.4 Exercises

0 Preliminaries

0.1 Properties of Integers

Universal Product Code (UPC)

 $(a_1, a_2, \cdots, a_{12}) \cdot (3, 1, 3, 1, \cdots, 3, 1) \mod 10 = 0.$

The 10-digit International Standard Book Number (ISBN-10) has the property $(a_1, a_2, \cdots, a_{10}) \cdot (10, 9, 8, 7, 6, 5, 4, 3, 2, 1) \mod 11 = 0$. As for a_{10} , X stands for 10.

0.2 Modular Arithmetic

Logic Gates & modulo 2 arithmetic

0.3 Complext Numbers

norm of a+bi

Closure under division

conjugation

0.4 Mathematical Induction

e.g. Prove that $2^n 3^{2n} - 1$ is always divisible by 17.

0.5 Equivalence Relations

```
1. reflexive property: a\sim a.
```

- 2. symmetric property: $a \sim b \Rightarrow b \sim a$.
- 3. transitive property: $a \sim b, \ b \sim c \Rightarrow a \sim c.$

e.g.

•
$$(a,b)\cong (c,d)$$
 if $ad=bc,b,d
eq 0$

Partition

0.6 Functions (Mappings)

To verify that a correspondence is a function:

$$x_1=x_2\Rightarrow \phi(x_1)=\phi(x_2).$$

One-to-one function:

$$\phi(x_1)=\phi(x_2)\Rightarrow a_1=a_2.$$

Function from A onto B

Properties

- 1. associativity: $\gamma(\beta \alpha) = (\gamma \beta) \alpha$.
- 2. If α and β is one-to-one, then $\beta\alpha$ is one-to-one.
- 3. If α and β is onto, then $\beta \alpha$ is onto.
- 4. If α is one-to-one and onto, then there is a function α^{-1} from B onto A such that $(\alpha^{-1}\alpha)(a) = a$ for all a in A and $(\alpha\alpha^{-1})(b) = b$ for all b in B.

0.7 Exercise

- 1. If a mod st = b mod st, show that a mod s=b mod s and a mod t = b mod t. The converse is true if s and t are relatively prime.
- 2. If n is an integer greater than 1 and $(n-1)! = 1 \mod n$, prove that n is prime.
- 3. Prove that 3, 5, and 7 are the only three consecutive odd integers that are prime.

1 Introduction to Groups

1.1 Symmetries of a Square

Cayley table

- closure
- identity
- inverse
- associativity

commutative (Abelian)

1.2 The Dihedral Groups

cross cancellation

1.3 Bibliography of Niels Abel

2 Groups

2.1 Definition and Examples of Groups

Group	Operation	Identity	Form of Element	Inverse	Abelian
GL(n,F)	Matrix multiplication	E	A eq 0		No
SL(n,F)	Matrix multiplication	E	A = 1		No
U(n)	Mutiplication mod n	1	$\gcd(k,n)=1$		Yes
\mathbb{R}^{n}	Componentwise addition	$(0,0,\cdots,0)$	(a_1,a_2,\cdots,a_n)		Yes

2.2 Elementary Properties of Groups

- Uniqueness of the Identity
- Cancellation
- Uniqueness of Inverses
- Socks-Shoes Property: $(ab)^{-1} = b^{-1}a^{-1}$.

2.3 Historical Note

2.4 Exercises

- 1. Left-right cancellation implies commutativity, and cross cancellation implies Abelian property.
- 2. Law of Exponents for Abelian Groups: $(ab)^n=a^nb^n.$
- 3. ab=ba \Leftrightarrow $(ab)^2=a^2b^2$ \Leftrightarrow $(ab)^{-2}=b^{-2}a^{-2}.$
- 4. Suppose F_1 and F_2 are distinct reflections in a dihedral group D_n , Prove that $F_1F_2 \neq R_0$. If $F_1F_2 = F_2F_1$, then $F_1F_2 = R_{180}$.

3 Finite Groups; Subgroups

3.1 Temiology and Notation

Order of a group

Order of an element

Subgroup

Proper subgroup: $H \subset G$.

3.2 Subgroup Tests

- To prove that a subset is a subgroup
 - One-Step Test: $ab^{-1} \in H$.
 - Two-Step Test: $ab, a^{-1} \in H$.
 - \circ Finite Subgroup Test: $ab \in H$.
- To prove that a subset is not a subgroup
 - Show that the identity is not in the set.
 - Exhibit an element of the set whose inverse is not in the set.
 - Exhibit two elements of the set whose product is not in the set.

3.3 Examples of Subgroups

- $\langle a \rangle$ is an Abelian subgroup, where *a* is called a *generator* of *G*.
- $\langle S \rangle$ is the smallest subgroup of G containing S.
- Gaussian Integers: $\langle 1, \mathbf{i} \rangle = \{ a + b\mathbf{i} \mid a, , b \in \mathbb{Z} \}.$
- Center is a subgroup. $Z(G) = \{a \in G \mid ax = xa \text{ for all } x \text{ in } G\}.$
- For $n\geq 3$,

$$Z(D_n) = egin{cases} \{R_0, R_{180}\}, & n ext{ is even}, \ \{R_0\}, & n ext{ is odd}. \end{cases}$$

- Centralizer of a in G is a subgroup: $C(a) = \{g \in G \mid ga = ag\}.$
- Centralizer of H in G is a subgroup: $C(H) = \{g \in G \mid xh = hx \text{ for all } h \in H\}.$
- $Z(G)\in C(a)$, $Z(G)=igcap_{a\in G}C(a)$.
- *G* is Abelian if and only if C(a) = G for all *a* in *G*.

3.4 Exercises

- 1. For elements a, b in group \mathbb{Z}_n , $|a+b|=(|a|+|b|) \mod n$.
- 2. Prove that if a is the only element of order 2 in a group, then a lies in the center of the group.

Proof. $ig(x^{-1}axig)^2=x^{-1}ax=a\Rightarrow ax=xa.$

- 3. No group is the union of two proper subgroups, but some groups are the union of three proper subgroups.
- 4. Let G be a group and let H be a subgroup of G. For any fixed x in G, define the **conjugate** of $H: xHx^{-1} = \{xhx^{-1} \mid h \in H\}$, which preserves structure.
- 5. Compute the probability that two randomly chosen elements (they can be the same) from D_4 communte:

$$P = egin{cases} rac{n+3}{4n}, & n ext{ is odd}, \ rac{n+6}{4n}, & n ext{ is even}. \end{cases}$$

4 Cyclic Groups

4.1 Properties of Cyclic Groups

If a and b belong to a finite group and ab=ba, then |ab| divides $|a|\,|b|.$

• |ab| = |a| |b| if and only if (|a|, |b|) = 1.

Theorem 4.2 ☆

$$|a|=n,\, d= ext{gcd}(n,k) \quad \Rightarrow \quad ig\langle a^kig
angle = ig\langle a^dig
angle,\, \left|a^k
ight| = rac{n}{d}.$$

- In a finite cyclic group, the order of an element divides the order of the group.
- $\gcd(n,i) = \gcd(n,j) \quad \Leftrightarrow \quad \langle a^i \rangle = \langle a^j \rangle \quad \Leftrightarrow \quad |a^i| = |a^j|.$ • $\gcd(n,j) = 1 \quad \Leftrightarrow \quad \langle a \rangle = \langle a^j \rangle \quad \Leftrightarrow \quad |a| = |\langle a^j \rangle|.$

4.2 Classification of Subgroups of Cyclic Groups

Theorem 4.3 \bigstar Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k, namely, $\langle a^{n/k} \rangle$.

Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is $\phi(d)$.

• Notice that for a finite cyclic group of order *n*, the number of elements of order *d* for any divisor *d* of *n* depends only on *d*.

Corollary 4.1 Number of Elements of Order *d* in a Finite Group.

In a finite group, the number of elements of order d is a multiple of $\phi(d)$.

$$\phi\left(p^{n}
ight)=p^{n}-p^{n-1} \ \phi(p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{m}^{k_{m}})=\phi(p_{1}^{k_{1}})\phi(p_{2}^{k_{2}})\cdots \phi(p_{m}^{k_{m}})$$

subgroup lattice

4.3 Exercise

1. If a is a group element of infinite order, then

$$egin{aligned} &\left\langle a^{i}
ight
angle \cap\left\langle a^{j}
ight
angle =\left\langle a^{\left[i,j
ight]}
ight
angle \ &\left\langle a^{i}
ight
angle \cup\left\langle a^{j}
ight
angle =\left\langle a^{\left(i,j
ight)}
ight
angle \end{aligned}$$

2. Prove that a finite group is the union of proper subgroups if and only if the group is not cyclic.

4.3 Bibliography of James Joseph Sylvester

5 Permutation Groups

5.1 Definitions and Notation

5.2 Cycle Notation

5.3 Properties of Permutations

Theorem 5.1 Products of Disjoint Cycles

Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

Theorem 5.2 Disjoint Cycles Commute

If the pair of cycles $\alpha = (a_1, a_2, \cdots, a_m)$ and $\beta = (b_1, b_2, \cdots, b_n)$ have no entries in common, then $\alpha\beta = \beta\alpha$.

Theorem 5.3 Order of a Permutation

The order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.

Theorem 5.4 Product of 2-Cycles

Every permutation in $S_n, n > 1$, is a product of 2-cycles.

Lemma If $\varepsilon = \beta_1 \beta_2 \cdots \beta_r$, where β_i are 2-cycles, then r is even.

Theorem 5.5 Always Even or Always Odd

Therorem 5.6 Even Permutations Form a Group

The set of even permutations in S_n forms a subgroup of S_n , which is called the alternating group of degree n, A_n .

Theorem 5.7 For $n \ge 1$, A_n has order n!/2.

5.4 A Check-Digit Scheme Based on $D_5\,$

5.5 Exercise

1. Stabilizer of a in G is a subgroup: $\operatorname{stab}(a) = \{ \alpha \in G \mid \alpha(a) = a \}$. 2. Let α belong to S_n , Prove that $|\alpha|$ divides n!.

5.5 Bibliography of Augustin Cauchy

5.6 Bibilography of Alan Turing

6 Isomorphisms

6.1 Motivation

6.2 Definition and Examples

An isomorphism ϕ from a group G_1 to a group G_2 is a one-to-one onto mapping (or function) from G_1 to G_2 that preserves the group operation. That is,

$$orall a,b\in G_1,\,\phi(ab)=\phi(a)\phi(b).$$

If there is an isomorphism from G_1 onto G_2 , we say that G_1 and G_2 are isomorphic and write $G_1 \approx G_2$.

To prove a group G_1 is isomorphic to a group G_2 :

- 1. "Mapping": Define a function ϕ from G_1 to G_2 ;
- 2. "1-1": Assume that $\phi(a)=\phi(b)$, prove that a=b;
- 3. "Onto": For any element \overline{g} in G_2 , find an element g in G_1 such that $\phi(g) = \overline{g}$;
- 4. "O.P.": Prove that ϕ is operation-preserving; that is, show that $\phi(ab) = \phi(a)\phi(b)$.

Example

• Conjugation by M: $\phi_M = MAM^{-1}$.

6.3 Properties of Isomorphisms

Theorem 6.1 Properties of Isomorphisms Acting on Elements

Suppose that ϕ is an isomorphism from a group G_1 onto a group G_2 . Then

- 1. ϕ carries the identity of G_1 to the identity of G_2 .
- 2. For every integer n and for every group element a in G_1 , $\phi(a^n) = [\phi(a)]^n$. (Additive form: $\phi(na) = n\phi(a)$.)
- 3. For any elements a and b in G_1 , a and b commute if and only if $\phi(a)$ and $\phi(b)$ commute.
- 4. $G_1=\langle a
 angle$ if and only if $G_2=\langle \phi(a)
 angle.$
- 5. $|a|=|\phi(a)|$ for all a in G_1 (isomorphisms preserve orders).
- 6. For a fixed integer k and a fixed group element b in G_1 , the equation $x^k = b$ has the same number of solutions in G_1 as does the equation $x^k = \phi(b)$ in G_2 .
- 7. If G_1 is finite, thenn G_1 and G_2 have exactly the same number of elements of every order.

Theorem 6.2 Properties of Isomorphisms Acting on Groups

Suppose that ϕ is an isomorphism from a group G_1 onto a group G_2 . Then

1. ϕ^{-1} is an isomorphism from G_2 onto G_1 .

- 2. G_1 is Abelian if and only if G_2 is Abelian.
- 3. G_1 is cyclic if and only if G_2 is cyclic.
- 4. If K is a subgroup of G_1 , then $\phi(K) = \{\phi(k) \mid k \in K\}$ is a subgroup of G_2 .
- 5. If K is a subgroup of G_2 , then $\phi^{-1}(K) = \{g \in G_1 \mid \phi(g) \in K\}$ is a subgroup of G_1 . 6. $\phi(Z(G_1)) = Z(G_2)$.

To prove groups G_1 and G_2 are not isomorphic:

- Observe that $|G_1| \neq |G_2|$.
- Observe that G_1 is cyclic but G_2 is not.
- Observe that G_1 is Abelian but G_2 is not.
- show that the largest order of any element in G_1 is not the same as that in G_2 .
- Show that the number of elements of some specific order in G_1 is not the same as G_2 .

6.4 Automorphisms

Definition Inner Automorphism Induced by a

Let G be a group, and let $a \in G$. The function ϕ_a defined by $\phi_a(x) = axa^{-1}$ for all x in G is called the **inner** automorphism of G induced by a.

 $\operatorname{Aut}(G)$: the set of all automorphisms of G.

 $\operatorname{Inn}(D)$: the set of all inner automorphisms of G.

Theorem 6.3 Aut(G) and Inn(G) are groups.

Theorem 6.4 $\operatorname{Aut}(Z_n) \approx U(n)$.

6.5 Cayley's Theorem

Theorem 6.5 Cayley's Theorem

Every group is isomorphic to a group of permutations.

The left regular representation of G: $\{T_g \mid T_g(x) = gx, \ g \in G\}$.

6.6 Exercise

1. $U(8) \approx U(12)$.

2. For all finite groups, the order of a subgroup divides the order of the group.

- 3. $|\operatorname{Aut}(D_n)| = n |U(n)|.$
- 4. Prove that

 $|\mathrm{Inn}(D_n)| = egin{cases} 2n, & n ext{ is odd}, \ n, & n ext{ is even}. \end{cases}$

6.7 Bibliography of Arthur Cayley

7 Cosets and Lagrange's Theorem

7.1 Properties of Cosets

 ${\rm Definition} \ {\rm Coset} \ {\rm of} \ H \ {\rm in} \ G$

Let G be a group and let H be a noempty subset of G. For any $a \in G$, $aH = \{ah \mid h \in H\}$, which is called the **left coset** of H in G containing a. The element ais called the **coset representative** of aH.

Lemma 7.1 Properties of Cosets

Let H be a subgroup of G, and $a,b\in G$, then

 $\begin{array}{lll} 4.\ aH = bH & \Leftrightarrow & a \in bH. \\ 5.\ aH = bH \ {\rm or} \ aH \cap bH = \varnothing. \\ 6.\ aH = bH & \Leftrightarrow & a^{-1}b \in H. \\ 7.\ |aH| = |bH| = |H|. \\ 8.\ aH = Ha & \Leftrightarrow & H = aHa^{-1} & \Leftrightarrow & H = a^{-1}Ha. \\ 9.\ aH \subset G & \Leftrightarrow & a \in H. \end{array}$

7.2 Lagrange's Theorem and Consequences

Theorem 7.1 Lagrange's Theorem: |H| Divides |G|

If *G* is a finite group and *H* is a subgroup of *G*, then |H| divides |G|. Moreover, the number of distinct left cosets of *H* in *G* is |G|/|H|.

• The **index** of a subgroup H in G is the number of distinct left cosets of H in G, denoted by |G:H|.

Corollary 1 |G:H| = |G|/|H|.

Corollary 2 |a| Divides |G|.

Corollary 3 Groups of Prime Order Are Cyclic.

Corollary 4 $a^{|G|} = e$.

Corollary 5 Fermat's Little Theorem: $a^p \equiv a \mod p$.

• $a^{p^n} \equiv a \mod p$.

Theorem 7.2 $|HK| = |H| |K| / |H \cap K|$.

For two finite subgroups H and K of a group, define the set $HK = \{hk \mid h \in H, k \in K\}$. Then $|HK| = |H| \, |K| / \, |H \cap K|$.

- HK and hK may not be a subgroup.
- $\bigstar HK$ may not be a subgroup of G, but $HK \in G$, so |HK| < |G|, but need not divide |G|.

Theorem 7.3 Classification of Groups of Order 2p.

Let G be a group of order 2p, where p is a prime greater than 2. Then G is isomorphic to Z_{2p} or D_p .

• $D_3 \approx S_3 \approx \operatorname{GL}(2, \mathbb{Z}_2).$

7.3 An Application of Cosets to Permutation Groups

Definition Stabilizer of a Point

Let G be a group of permutations of a set S. For each i in S, let $\operatorname{stab}_G(i) = \{\phi \in G \mid \phi(i) = i\}$. We call $\operatorname{stab}_G(i)$ the **stabilizer** of i in G.

Definition Orbit of a Point

Let G be a group of permutations of a set S. For each i in S, let $\operatorname{orb}_G(i) = \{\phi(i) \mid \phi \in G\}$. The set $\operatorname{orb}_G(i)$ is a subset of S called the **orbit** of i under G.

Theorem 7.4 Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then, for any i from S, $|G| = |\operatorname{orb}_G(i)| \cdot |\operatorname{stab}_G(i)|.$

7.4 The Rotation Group of a Cube and a Soccer Ball

Theorem 7.5 The Rotation Group of a Cube

The group of rotations of a cube is isomorphic to S_4 .

- The rotation group of a pyraminx is isomorphic to A_4 .
- The rotation group of a soccer ball (megaminx) is isomorphic to $A_5.$

7.5 An Application of Cosets to the Rubik's Cube

7.6 Exercises

- 1. Let a and b be elements of a group G, and H and K be subgroups of G. If aH = bK, prove that H = K.
- 2. Let H and K are subgroups of G and g belongs to G, show that $g(H \cap K) = gH \cap gK$.
- 3. If G is a finite group of order n with the property that G has exactly one subgroup of order d for each positive divisor d of n, then G is cyclic.
- 4. Let H and K be subgroups of a finite group G with $H\subseteq K\subseteq G.$ Prove that $|G:H|=|G:K|\,|K:H|.$
- 5. If a finite group G has subgroups H and K such that $K \subseteq H \subseteq G$ with [G : K] = p where p is prime, prove that H = G or H = K.
- 6. Prove that if G is a finite gruop, the index of Z(G) cannot be prime.
- 7. Prove that A_5 has no subgroup of order 15, 20 or 30, and S_5 has no subgroup of order 30.

7.7 Bibliography of Joseph Lagrange

8 External Direct Products

8.1 Definition and Examples

Definition External Direct Product

Let G_1, G_2, \dots, G_n be a finite collection of groups. The external direct product of them, written as $G_1 \oplus G_2 \oplus G_2 \oplus \dots \oplus G_n$ is the set of all *n*-tuples for which the *i*th

component is an element of G_i and the operation is componentwise.

- $|G_1 \oplus G_2 \oplus \cdots \oplus G_n| = |G_1| |G_2| \cdots |G_n|.$
- $Z_m \oplus Z_n \approx Z_{mn}$ if and only if $\gcd(m,n) = 1$.

8.2 Properties of External Direct Products

Theorem 8.1 Order of an Element in a Direct Product

The order of an element in a direct product of a finite number of finite groups is the least common multiple of the orders of the components of the element. In symbols,

 $|(g_1, g_2, \cdots, g_n)| = \operatorname{lcm}(|g_1|, |g_2|, \cdots, |g_n|).$

• If m and n be positive integers that are divisible by a prime p, then the number of elements of order p in $Z_m \oplus Z_n$ is $p^2 - 1$.

Theorem 8.2 Criterion for $G \oplus H$ to be Cyclic.

Let G and H be finite cyclic groups. Then $G \oplus H$ is cyclic if and only if |G| and |H| are relatively prime.

Corollary 1 Criterion for $G_1 \oplus G_2 \oplus \cdots \oplus G_n$ to be Cyclic.

Corollary 2 Criterion for $Z_{n_1n_2\cdots n_k} \approx Z_{n_1} \oplus Z_{n_2} \oplus \cdots \oplus Z_{n_k}$.

 $Z_{n_1n_2\cdots n_k} \approx Z_{n_1} \oplus Z_{n_2} \oplus \cdots \oplus Z_{n_k}$ if and only if n_i and n_j are relatively prime when $i \neq j$.

 $egin{aligned} Z_2 \oplus Z_{30} &pprox Z_2 \oplus Z_6 \oplus Z_5 \ &pprox Z_2 \oplus Z_2 \oplus Z_3 \oplus Z_5 \ &pprox Z_2 \oplus Z_6 \oplus Z_5 \ &pprox Z_2 \oplus Z_3 \oplus Z_2 \oplus Z_5 \ &pprox Z_6 \oplus Z_{10}. \end{aligned}$

8.3 The Group of Units Modulo n as an External Direct Product

 $U_k(n) \equiv \{x \in U(n) \mid x = 1 \mod k\}$ is a subgroup of U(n).

Theorem 8.3 U(n) as an External Direct Product

Suppose s and t are relatively prime. Then U(st) is isomorphic to the external direct product of U(s) and U(t). In short,

$$U(st) \approx U(s) \oplus U(t).$$

Moreover, $U_s(st)$ is isomorphic to U(t), and $U_t(st)$ is isomorphic to U(s).

$$U(st) o U(s) \oplus U(t) \ x \mapsto (x \mod s, x \mod t) \ egin{array}{c|c} U_s(st) o U(t) \ x \mapsto x \mod (t) \ \end{array}$$

Corollary

Let
$$m = n_1 n_2 \cdots n_k$$
, where $gcd(n_i, n_j) = 1$ for $i \neq j$. Then

$$U(m) \approx U(n_1) \oplus U(n_2) \oplus \cdots \oplus U(n_k).$$

$$egin{cases} U(2)pprox\{0\},\ U(4)pprox Z_2,\ U(2^n)pprox Z_{2^{n-2}}\oplus Z_2,\ U(p^n)pprox Z_{p^n-p^{n-1}},\ & ext{for }n\ge 3,\ U(p^n)pprox Z_{p^n-p^{n-1}},\ & ext{for }p ext{ an odd prime}. \end{cases}$$

e.g. $|\operatorname{Aut}^4(Z_{27})| = 1.$

8.4 RSA Public Key Encryption Scheme

Receiver

- 1. Plck very large primes p and q and compute n=pq.
- 2. Compute the least common multiple of p-1 and q-1; let us call it m.
- 3. Pick e relatively prime to m.

- 4. Find d such that $ed \mod m = 1$.
- 5. Publicly announce n and e.

Sender

- 1. Convert the message to a string of digits.
- 2. Break up the message into uniform blocks of digits; call them M_1, M_2, \cdots, M_k . (The integer calue of each M_i must be less than n. In practive, n is so large that this is not a concern.)
- 3. Check to see that the greatest common divisor of each M_i and n is 1. If not, n can be factored and out code is broken. (In practice, the primes p and q are so large that they exceed all M_i , so this step may be omitted.)
- 4. Calculate and send $R_i = M_i^e \mod n$.

Receiver

- 1. For each received message R_i , calculate $R_i^d \mod n$.
- 2. Covert the string of digits back to a string of characters.

Principles

 $egin{aligned} U(n) &pprox U(p) \oplus U(q) pprox Z_{p-1} \oplus Z_{q-1}. \ R_i^d &= (M_i^e)^d = M_i^{ed} = M_i^{1+km} = M_i. \end{aligned}$

8.5 Exercises

1. $G \oplus H$ is Abelian if and only if G and H are Abelian. 2. $G_1 \approx G_2, H_1 \approx H_2 \Rightarrow G_1 \oplus H_1 \approx G_2 \oplus H_2$. 3. $A \oplus B \approx A \oplus C \Leftrightarrow B \approx C$. 4. $U(8) \approx U(12), U(55) \approx U(75), U(144) \approx U(140), U_{50}(200) \approx U(4)$. 5. $U_p(p^n) \approx Z_{p^{n-1}}$. 6. For relatively prime positive integeres $s \leq n$ and $t \leq n$, show that $U_{st}(n) = U_s(n) \cap U_t(n)$

8.6 Bibliography of Leonard Adleman

9 Normal Subgroups and Factor Groups

9.1 Normal Subgroups

Definition Normal Subgroup

A subgroup H of a group G is called a normal subgroup of G if aH = Ha for all a in G. We denote this by $H \lhd G$.

Theorem 9.1 Normal Subgroup Test

A subgroup H of G is normal in G if and only if $xHx^{-1} \subseteq H$ for all x in G.

e.g.

- Every subgroup of an Abelian group is normal.
- The center Z(G) of a group is normal.

- A_n is a normal subgroup of S_n .
- Every subgroup of D_n consisting solely of rotations is normal.
- $SL(2,\mathbb{R})$ is a normal subgroup of $GL(2,\mathbb{R})$.

Properties:

- If H and K are subgroups of G and H is normal, then HK is a subgroup of G.
- If a group G has a unique subgroup H of some finite order, then H is normal in G.
- Normality is not transitive: $K \lhd L \lhd G \Rightarrow K \lhd G$.
- If N and M are normal, then $N\cap M$ and NM are normal.
- $K/N \lhd G/N \Rightarrow K \lhd G.$

9.2 Factor Groups

Theorem 9.2 Factor (Quoation) Groups

Let G be a group and let H be a normal subgroup of G. The set $G/H = \{aH \mid a \in G\}$ is a group under the operation (aH)(bH) = abH.

• The converse is also true: if aHbH = abH defines a group operation on the set of left cosets of H in G, then H is normal in G.

9.3 Applications of Factor Groups

Theorem 9.3 G/Z Theorem

Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic, then G is Abelian, thus G/Z(G) is trivial.

- If G/H is cyclic, where H is a subgroup of Z(G), then G is Abelian.
- If G is non-Abelian, then G/Z(G) is not cyclic.

• A non-Abelian group of order pq, where p and q are primes, must have a trivial center.

- If $K = \{H, a_1H, a_2H, a_3H\}$ is a subgroup of the factor group G/H, then the set $K = H \cup a_1H \cup a_2H \cup a_3H$ is a <u>subgroup</u> of G of order 4 |H|, called the **pull back** of K to G.
- Suppose that G is a finite group and a factor group G/H has an element aH of order n, then G has an element of order n.

Theorem 9.4 G, G/Z(G)

For any group G, G/Z(G) is isomorphic to $\mathrm{Inn}(G)$.

It can be proved by the First Isomorphism Theorem in chapter 10 easily.

- $|Z(D_6)| = 2 \Rightarrow |D_6/Z(D_6)| = 6 \Rightarrow D_6/Z(D_6) \approx D_3 \text{ or } Z_6$. By Theorem 9.3 and 9.4, we know that $\text{Inn}(D_6) \approx D_3$.
- $\operatorname{Inn}(D_{2n}) \approx D_n$, $\operatorname{Inn}(D_{2n+1}) \approx D_{2n+1}$.

Theorem 9.5 Cauchy's Theorem for Abelian Groups

Let G be a finite Abelian group and let p be a prime that divides the order of G, then G has an element of order p.

9.4 Internal Direct Products

 ${\rm Definition}$ Internal Direct Product of H and K

We say that G is the internal direct product of H and K and write $G = H \times K$ if H and K are normal subgroups of G and

G = HK and $H \cap K = \{e\}.$

- If s and t are relatively prime positive integers then $U(st) = U_s(st) \times U_t(st)$.
- $D_6 = \{R_0, R_{120}, R_{240}, F, R_{120}F, R_{240}F\} \times \{R_0, R_{180}\} \approx D_3 \oplus Z_2.$

Definition Internal Direct Product $H_1 imes H_2 imes \cdots H_n$

Let H_1, H_2, \cdots, H_n be a finite collection of notmal subgroups of G. We say that G is the internal direct product of H_1, H_2, \cdots, H_n and write $G = H_1 \times H_2 \times \cdots \times H_n$, if

1. $G = H_1 H_2 \cdots H_n = \{h_1 h_2 \cdots h_n \mid h_i \in H_i\}$, 2. $(H_1 H_2 \cdots H_i) \cap H_{i+1} = \{e\}$ for $i = 1, 2, \cdots, n-1$.

Theorem 9.6 $H_1 imes H_2 imes \cdots imes H_n pprox H_1 \oplus H_2 \oplus \cdots \oplus H_n$

If a group G is the internal direct product of a finite number of subgroups H_1, H_2, \dots, H_n , then G is isomorphic to the external direct product of H_1, H_2, \dots, H_n .

- To prove this
 - $\circ \ \forall h_i \in H_i, h_j \in H_j, h_i h_j = h_j h_i.$
 - Each member of G can be expressed uniquely in the form $h_1h_2\cdots h_n$.
 - Mapping: $\phi(h_1h_2\cdots h_n) = (h_1, h_2, \cdots, h_n).$
- If $m=n_1n_2\cdots n_k,\,(n_i,n_j)=1$ for i
 eq j, then

$$egin{aligned} U(m) &= U_{m/n_1}(m) imes U_{m/n_2}(m) imes \cdots imes U_{m/n_k}(m) \ &pprox U(n_1) \oplus U(n_2) \oplus \cdots \oplus U(n_k) \end{aligned}$$

Classification Theorems

- Classification of subgroups of finite cyclic groups: There is exactly one subgroup for each divisor of the order of the group and no others.
- Classification of groupus of prime order: Every group of prime order p is isomorphic to Z_p .
- Classification of groups of 2p where p is an odd prime: Every group of 2p is isomorphic to Z_{2p} or D_p .
- Classification of groups of 4: Every group of order 4 is isomorphic to Z_4 or $Z_2 \oplus Z_2$.

Theorem 9.7 Classification of finite Abelian groups of squarefree order

Every Abelian group of order $p_1 p_2 \cdots p_k$ where p_i are distinct primes is cyclic.

• $G = H_1 \times H_2 \times \cdots \times H_k$.

Theorem 9.8 Classification of Groups of Order p^2

Every group of order p^2 , where p is a prime, is isomorphic to Z_{p^2} or $Z_p\oplus Z_p.$

• Let G be a group of order p^2 , then every subgroup of the form $\langle a
angle$ is normal in G.

Corollary

If G is a group of order p^2 , where p is a prime, then G is Abelian.

9.5 Exercises

1. Prove that if H has index 2 in G, then H is normal in G.

- 2. Prove that a factor group of a cyclic group is cyclic, a factor group of an Abelian group is Abelian.
- 3. H is normal in G, a is an element of G. Then the order of the element aH in the factor group G/H is the smallest positive integer n such that a^n is in H. Moreover, |gH| divides |g|.
- 4. $H pprox K \Rightarrow G/H pprox G/K$.
- 5. Groups of order 2 or 4 are all Abelian.

6. Let G be a group and let $S=ig\{x^{-1}y^{-1}xy\mid x,y\in Gig\},\,G'=[G,G]=\langle S
angle$. Then

- 1. G' is normal in G.
- 2. G/G' is Abelian.
- 3. If G/N is Abelian, then $G'\subseteq N.$
- 4. If H is a subgroup of G and $G' \subseteq H$, then H is normal.
- 7. $\operatorname{Inn}(G)$ is normal in $\operatorname{Aut}(G)$.

Question: 66.

9.6 Bibliography of Evariste Galois

10 Group Homomorphisms

10.1 Definition and Examples

Definition Group Homomorphism

A homomorphism ϕ from a group G_1 to a group G_2 is a mapping from G_1 into G_2 that preserves the group operation; that is, $\phi(ab) = \phi(a)\phi(b)$ for all a, b in G.

Definition Kernel of a Homomorphism

The **kernel** of a homomorphism ϕ from a group G to a group with identity e is the set Ker $\phi = \{x \in G \mid \phi(x) = e\}.$

- Any isomorphism is a homoporphism that is also onto and one-to-one, the kernel of which is a trivial subgroup.
- Let $\phi: \operatorname{GL}(n,\mathbb{R}) o \mathbb{R}^*, \, A \mapsto \det A$, then $\operatorname{Ker} \phi = \operatorname{SL}(n,\mathbb{R})$.
- $U(st) = U_s(st)U_t(st), \ \phi(ab) = a$, then $\operatorname{Ker} \phi = U_t(st)$.
- Every linear transformation is a group homomorphism and the null-space is the same as the kernel. An invertible linear transformation is a group isomorphism.

10.2 Properties of Homomorphisms

Theorem 10.1 Properties of Elements Under Homomorphisms

```
Let \phi be a homomorphism from a group G_1 to a group G_2 and let g be an element of G_1.
Then
```

```
1. \phi carries the identity of G_1 to the identity of G_2.
```

2. $\phi(g^n)=\phi(g)^n$ for all n in $\mathbb{Z}.$

3. If |g| is finite, then $|\phi(g)|$ divides |g| and if $|G_1|$ is finite, then $|\phi(g)|$ divides |g| and $|\phi(G_1)|$.

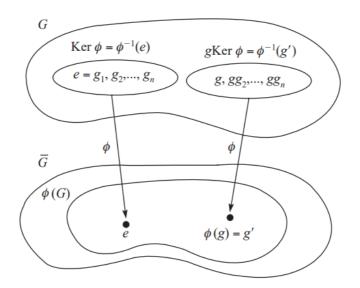
- 4. $\operatorname{Ker} \phi$ is a subgroup of G_1 .
- 5. $\phi(a) = \phi(b)$ if and only if $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.
- 6. If $\phi(g)=g'$, then $\phi^{-1}(g')=\{x\in G_1\mid \phi(x)=g'\}=g\operatorname{Ker}\phi.$
- The particular solution to Ax = b is x_0 , the entire solution to Ax = 0 is S, then the entire solution to Ax = b is $x_0 + S$. It's a special case of property 6.

Theorem 10.2 Properties of Subgroups Under Homomorphisms

Let ϕ be a homomorphism from a group G_1 to a group G_2 and let H be a subgroup of G. Then 1. $\phi(H) = \{\phi(h) \mid h \in H\}$ is a subgroup of G_2 . 2. If H is cyclic, then $\phi(H)$ is cyclic. 3. If H is Abelian, then $\phi(H)$ is Abelian. 4. If H is normal in G_1 , then $\phi(H)$ is normal in $\phi(G_1)$. 5. If $|\text{Ker } \phi| = n$, then ϕ is an n-to-1 mapping from G_1 onto $\phi(G_1)$. 6. If H is finite, then $|\phi(H)|$ divides |H|. 7. $\phi(Z(G_1))$ is a subgroup of $Z(\phi(G_1))$. 8. If K is a subgroup of G_2 , then $\phi^{-1}(K) = \{k \in G_1 \mid \phi(k) \in K\}$ is a subgroup of G_1 . 9. If K is a normal subgroup of G_2 , then $\phi^{-1}(K) = \{k \in G_1 \mid \phi(k) \in K\}$ is a normal subgroup of G_1 . 10. If ϕ is onto and Ker $\phi = \{e\}$, then ϕ is an isomorphism from G_1 to G_2 .

•
$$|\phi^{-1}(H)| = |H| |\operatorname{Ker} \phi|.$$

• The inverse image of an element is a coset of the kernel and that every element in that coset has the same image.



Corollary Kernels are Normal

Let ϕ be a group homomorphism from G_1 to G_2 , then $\operatorname{Ker} \phi$ is a normal subgroup of G_1 .

• The number of homomorphisms from \mathbb{Z}_m to \mathbb{Z}_n is $d = \gcd(m, n)$, since such a homomorphism is completely specified by the image a of 1, and |a| divides both m and n, and $d = \sum \phi(a)$ for all divisor a of d.

10.3 The First Isomorphism Theorem

Theorem 10.3 First Isomorphism Theorem

Let ϕ be a group homomorphism from G_1 to G_2 , then the mapping from $G_1/\operatorname{Ker} \phi$ to $\phi(G_1)$, given by $g\operatorname{Ker} \phi \to \phi(g)$, is an isomorphism. In symbols, $G_1/\operatorname{Ker} \phi \approx \phi(G_1)$.

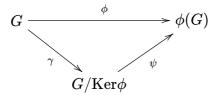
Corollary 1

If ϕ is a homomorphism from a finite group G_1 to G_2 , then $|G_1|/|\mathrm{Ker}\,\phi|=|\phi(G_1)|.$

Corollary 2

If ϕ is a homomorphism from a finite group G_1 to G_2 , then $|\phi(G_1)|$ divides $|G_1|$ and $|G_2|$.

The commutative diagram of Theorem 10.3 is:



 $\gamma: G \to G/\operatorname{Ker} \phi, \ g \mapsto g\operatorname{Ker} \phi$ is called the **natural mapping** from G to $G/\operatorname{Ker} \phi$. The diagram is commutative since $\psi \gamma = \phi$.

- $\mathbb{Z}/\langle n \rangle \approx \mathbb{Z}_n$ since $\phi(m) = m \mod n$ is a homomorphism with $\operatorname{Ker} \phi = \langle n \rangle$. Likewise, $\mathbb{Z}[\mathrm{i}]/\{sn + tn\mathrm{i} \mid s, t \in \mathbb{Z}\} \approx \mathbb{Z}_n[\mathrm{i}]$.
- $\operatorname{GL}(2,\mathbb{R})/\operatorname{SL}(2,\mathbb{R}) \approx \mathbb{R}^*$ since $\phi(A) = \det A$ from $\operatorname{GL}(2,\mathbb{R})$ onto \mathbb{R}^* is a homomorphism with $\operatorname{Ker} \phi = \operatorname{SL}(2,\mathbb{R})$. Likewise,

 $\mathrm{SL}^\pm(2,\mathbb{R})=\{A\in\mathrm{GL}(2,\mathbb{R})\mid \det A=\pm 1\}pprox \mathbb{R}^+$ since we have $\phi(A)=(\det A)^2.$

• For an Abelian group G and a positive integer k, let G^k denote the subgroup $\{x^k \mid x \in G\}$ and $G^{(k)}$ the subgroup $\{x \in G \mid x^k = e\}$. Then $G/G^{(k)} \approx G^k$ since we have $\phi(x) = x^k$, but $G/G^k \not\approx G^{(k)}$ since $\phi(x^k) = x$ may be not well-defined.

Theorem N/C Theorem

Let H be a subgroup of a group G. Noting that the normalizer of H in G, $N(H) = \{x \in G \mid xHx^{-1} = H\}$, and the centralizer of H in G, $C(H) = \{x \in G \mid \forall h \in H, xhx^{-1} = h\}$, are subgroups of G, consider the mapping from N(H) to $\operatorname{Aut}(H)$ given by $g \mapsto \phi_g$, where $\phi_g(h) = ghg^{-1}$. This mapping is a homomorphism with $\operatorname{Ker} \phi_g = C(H)$. So, N(H)/C(H) is isomorphic to a subgroup of $\operatorname{Aut}(H)$, in fact, $N(H)/C(H) \approx \operatorname{Inn}(H)$.

Theorem 10.4 Normal Subgroups Are Kernels

Every normal subgroup N of a group G is the kernel of a **natural homomorphism** of G defined by $\phi: G \to G/N, g \mapsto gN$.

10.4 Exercieses

1. $G \xrightarrow{\phi} H \xrightarrow{\sigma} K$, then Ker ϕ is a normal subgroup of Ker $\sigma \phi$, and

 $[\operatorname{Ker} \sigma \phi : \operatorname{Ker} \phi] = |H|/|K|.$

- 2. $U(st)/U_s(st) \approx U(s)$.
- 3. If $G=\langle S
 angle$ and ϕ is a homomorphism from G to some group, prove that $\phi(G)=\langle \phi(S)
 angle.$
- 4. Let N be a normal subgroup of a group G. Prove that every subgroup of G/N has the form H/N, where H is a subgroup of G.
- 5. For any two primes p and q with p < q where $p \nmid q 1$, a group of order pq is cyclic.

Theorem First Isomorphism Theorem

Let ϕ be a group homomorphism from G_1 onto G_2 , then the mapping ψ from $G_1/\operatorname{Ker} \phi$ to G_2 , given by $g\operatorname{Ker} \phi \to \phi(g)$, is an isomorphism. In symbols, $G_1/\operatorname{Ker} \phi \approx G_2$.

Proof $\psi(x \operatorname{Ker} \phi y \operatorname{Ker} \phi) = \psi(xy \operatorname{Ker} \phi) = \phi(xy) = \phi(x)\phi(y) = \psi(x \operatorname{Ker} \phi)\psi(y \operatorname{Ker} \phi).$

Theorem Second Isomorphism Theorem

If K is a subgroup of G and N is a normal subgroup of G, then $K/(K\cap N)pprox KN/N.$

Proof Let $\phi: K o KN/N, \, k \mapsto kN$, then $\operatorname{Ker} \phi = K \cap N$. \Box

Theorem Third Isomorphism Theorem

If M and N are normal subgroups of G and $N\subseteq M$, then (G/N)/(M/N)pprox G/M.

Proof Let $\phi:G/N o G/M,\,gN\mapsto gM$, then $\operatorname{Ker}\phi=M/N.$ $\ \ \Box$

10.5 Bibliography of Camile Jordan

11 Fundamental Theorem of Finite Abelian Groups

11.1 The Fundamental Theorem

Theorem 11.1 Fundamental Theorem of Finite Abelian Groups

Every finite Abelian group is a direct product of cyclic groups of prime-power order. Moreover, the number of terms in the product and the orders of the cyclic groups are uniquely determined by the group.

Writing an Abelian group G in the form $\mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{n_k}}$, is called determining the isomorphism class of G.

• If $k = n_1 + n_2 + \dots + n_t$, then $\mathbb{Z}_{p^{n_1}} \oplus \mathbb{Z}_{p^{n_2}} \oplus \dots \oplus \mathbb{Z}_{p^{n_t}}$ is an Abelian group of order p^k .

11.2 The Isomorphism Classes of Abelian Groups

Corollary Existence of Subgroups of Abelian Groups

If m divides the order of a finite Abelian group G, then G has a subgroup of order m.

11.3 Proof of the Fundamental Theorem

Lemma 1

Let G be a finite Abelian group of order p^nm , where p is a prime that does not divide m. Then $G = H \times K$, where $H = \{x \in G \mid x^{p^n} = e\}$ and $K = \{x \in G \mid x^m = e\}$. Moreover, $|H| = p^n$.

• Given an Abelian group G with $|G| = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$, where p's are distinct primes, let $G(p_i) = \left\{ x \in G \mid x^{p_i^{n_i}} = e \right\}$, then $G = G(p_i) \times G(p_2) \times \cdots \times G(p_k)$ and $|G(p_i)| = p_i^{n_i}$.

Lemma 2

Let G be an Abelian group of prime-power order and let a be an element of maximum order in G, then G can be written in the form $\langle a \rangle \times K$.

Lemma 3

A finite Abelian group of prime-order is an internal direct product of cyclic groups.

Lemma 4

Suppose that *G* is a finite Abelian group of prime-power order. If $G = H_1 \times H_2 \times \cdots \times H_m$ and $G = K_1 \times K_2 \times \cdots \times K_n$, where the *H*'s and *K*'s are nontrivial cyclic subgroups with $|H_1| \ge |H_2| \ge \cdots \ge |H_m|$ and $|K_1| \ge |K_2| \ge \cdots \ge |K_n|$, then m = n and $|H_i| = |K_i|$ for all *i*.

11.4 Exercises

- 1. The number of elements in $\mathbb{Z}_{p^{n_1}}\oplus\mathbb{Z}_{p^{n_2}}\oplus\cdots\oplus\mathbb{Z}_{p^{n_k}}$ of order p is $p^{n-1}+p^{n-2}+\cdots+p+1=rac{p^n-1}{p-1}.$
- 2. Dirichlet's Theorem says that, for every pair of relatively prime integers a and b, there are infinitely many primes of the form at + b. Use **Dirichlet's Theorem** to prove that every finite Abelian group is isomorphic to a subgroup of a U-group. (Hint: $U(p_i^{n_i}t + 1) \approx \mathbb{Z}_{p_i^{n_i}t})$